Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Toute variété différentiable M admet une métrique dite métrique riemannienne.\ En définissant H={z?C:Im(z)>0}, on peut munir de H d'une métrique riemannienne ds2=dzdz¯/(Im(z))2=dx2+dy2/y2.\ Muni de cette métrique, H est une variété riemannienne à la quelle on associe le fibré tangent, TH ainsi que le fibré unitaire tangent, T1H. Les éléments de T1H peuvent être exprimés, de façon bijective, en termes des éléments du groupe PSL(2,R) dont l'action sur T1H est transitive et libre.\ La métrique définie sur M (en particulier sur M=H) permet de définir sur TM (en particulier sur T1H) une métrique connue sous le nom de métrique de Sasaki
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile