"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
Un feuilletage de dimension p (ou de codimension q = m-p) est la donnée d'une relation d'équivalence ouverte R sur une variété différentiable M de dimension m vérifiant les deux propriétés qui suivent: (i) pour tout x M, ils existent un overt U de M et un un homéomorphisme de U vers son image envoyant toute classe d'équivalence de la relation restriction R/U de R à U est la trace d'un plan horizontal p×{y}, y q (on peut supposer que (U)= p× q), où désigne l'ensemble des nombres réels et k= ×...× , k-fois (k=p ou q). Le couple (U, ) est appelé une carte de M. (ii) Si (U, ) et (V, ) sont deux cartes distinguées pour avec U V est non vide, alors: ( o -1)(x, y) =( (x, y), (y)) p× q pour tout (x, y) ( p× q) (U V). Ce livre est une introduction aux notions topologiques générales des feuilletages, la structure transverse des feuilletages de codimension q=1, le groupe fondamental, les ensembles minimaux et d'autres propriétés topologiques. Dans cet ouvrage, on insiste plus particulièrement sur des exemples de feuilletages mettant en évidence la différence fondamentale entre la codimension q 2 et la codimension q=1.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile
Au Rwanda, l'itinéraire d'une femme entre rêve d'idéal et souvenirs destructeurs
Participez et tentez votre chance pour gagner des livres !