"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
La simulation numérique de systèmes d'équations différentielles raides ordinaires ou algébriques est devenue partie intégrante dans le processus de conception des systèmes mécaniques à dynamiques complexes. L'objet de ce travail est de développer des méthodes numériques pour réduire les temps de calcul par le parallélisme en suivant deux axes: interne à l'intégrateur numérique, et au niveau de la décomposition de l'intervalle de temps. Nous montrons l'efficacité limitée au nombre d'étapes de la parallélisation à travers les méthodes de Runge-Kutta et DIMSIM. Nous développons alors une méthodologie pour appliquer le complément de Schur sur le système linéarisé. Finalement, nous étendons le complément de Schur aux méthodes de type "Krylov Matrix Free". La décomposition en temps est d'abord vue par la résolution globale des pas de temps dont nous traitons la parallélisation du solveur non-linéaire. Nous introduisons les méthodes de tirs à deux niveaux, comme Parareal et Pita dont nous redéfinissons les finesses de grilles pour résoudre les problèmes raides pour lesquels leur efficacité parallèle est limitée. Et nous proposons une parallélisation de la méthode de correction du résidu.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile
Au Rwanda, l'itinéraire d'une femme entre rêve d'idéal et souvenirs destructeurs
Participez et tentez votre chance pour gagner des livres !