"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
Cette thèse se consacre à l'estimation non paramétrique pour les modèles autorégressifs. Nous considérons le problème de l'estimation d'une fonction inconnue en un point fixe à l'aide de données régies par des modèles autorégressifs. Pour définir le risque associé à l'emploi d'un estimateur et ainsi mesurer la qualité de celui-ci, nous utilisons la fonction de perte liée à l'erreur absolue. Le travail de cette thèse suit l'approche minimax dont l'objectif est de trouver une borne inférieure asymptotique du risque minimax puis de construire un estimateur, dit asymptotiquement efficace, dont le risque maximal atteint asymptotiquement cette borne. Pour un modèle autorégressif non paramétrique où la fonction autorégressive est supposée appartenir à une classe Höldérienne faible de régularité connue, nous montrons qu'un estimateur à noyau est asymptotiquement efficace. Lorsque la régularité de la fonction autorégressive est inconnue, nous obtenons la vitesse de convergence minimax adaptative des estimateurs sur une famille de classes Höldériennes.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile
Au Rwanda, l'itinéraire d'une femme entre rêve d'idéal et souvenirs destructeurs
Participez et tentez votre chance pour gagner des livres !