Des romans, livres de recettes et BD pour se régaler en famille !
Pour sa thèse qu'il exposa dès 1797, Gauss a fourni une démonstration difficile et topologiquement incomplète du théorème qui affirme l'existence d'au moins une racine complexe à tout polynôme réel non constant : tel se présente le théorème fondamental de l'algèbre. Gauss ne supposait pas l'existence des entités qui avaient été imaginées par Descartes pour permettre la décomposition de tout polynôme en facteurs du premier degré. En 1795, Laplace avait en effet rigoureusement démontré que ces « imaginaires », une fois supposés, se réduisaient aux nombres complexes, lesquels accaparaient le nom de « quantités imaginaires ». Une dizaine d'années après, Argand fournissait une démonstration aisée du théorème fondamental. Des démonstrations inventives différentes se succédèrent, de Gauss encore, de Cauchy, de Liouville, etc., et trouvèrent une place variable dans les grands traités classiques des mathématiques européennes jusqu'à la fin du XIXe siècle, où l'analyse réelle restait séparée de l'analyse complexe.
C'est cette période d'un siècle que le présent volume inventorie, donnant à lire en français les textes correspondants, explicitant le contexte intellectuel des preuves, mais réservant pour un prochain et dernier volume les explications algébriques à la façon de Galois et les preuves données au XXe siècle.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dernière réaction par Jean-Thomas ARA il y a 4 jours
Dernière réaction par RC de la Cluzze il y a 9 jours
Des romans, livres de recettes et BD pour se régaler en famille !
Découvrez 6 romans délicieusement horrifiques et tentez de les gagner...
Alice a quatorze ans quand elle est hospitalisée : un premier roman foudroyant
Yeong-ju est l’heureuse propriétaire d’une nouvelle librairie, située dans un quartier résidentiel de Séoul...