Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Les systèmes lents-rapides où systèmes à deux échelles de temps sont des systèmes d'équations différentielles caractérisés par la multiplication de la dérivée d'ordre le plus élevé par un paramètre réel petit. Dans ce travail on s'intéresse aux systèmes d'équations différentielles à deux échelles de temps (systèmes lents-rapides), dont le problème réduit est Hamiltonien avec ou sans paramètre lentement variable, on rappelle les notions de base sur les systèmes lents-rapides ainsi que sur les systèmes Hamiltoniens avec quelques résultats de référence de la littérature. On considère un système lent-rapide dont le système lent est Hamiltonien. Le théorème de Tikhonov nous assure une approximation de l'ordre de 1 des solutions du système lent-rapide considéré. En considérant la région d'oscillations du Hamiltonien et par l'application de la technique de moyennisation, on donne une approximation de l'ordre de 1/ de l'énergie totale du système et du paramètre, qui sont tous les deux à variation lente. On résout complètement à la main quelques exemples que nous illustrons avec des simulations numériques.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"