Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Le programme de Langlands locale p-adique proposé par Breuil est un sujet en plein développement. Son établissement dans le cas particulier de GL2(Qp) (Berger, Breuil, Colmez, Emerton, Kisin, Paskunas...) a permis la résolution des conjectures profondes de géométrie arithmétique (Fontaine-Mazur, Breuil-Mézard...). N''est pas claire comment étendre ces résultats à des groupes plus généraux et un parmi le problèmes le plus troublants est du à une compréhension insuffisante des représentations modulaires en l=p de GL2. Dans ce travail nous avons pour objectif l''étude profond des objets universels de GL2. Nous proposons une méthode, égalément valable pour Qp et pour ses extensions non ramifiés, qui permet de comprendre la structure interne des ces objets. Cela repose sur un étude soigneuse de certaines séries de Fourier discrètes sur l''arbre de GL2 et de certains polynômes de Witt. On obtient une description optimale de la restriction des représentations supersingulières au compact maximal et aux sous-groupes de Cartan, et on montre l''existence d''un objet combinatoire simple (la structure euclidienne) qui contrôle la combinatoire interne des représentations universelles pour GL2.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"