Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
La géométrie algébrique réelle est l'étude des ensembles de solutions d'un système d'équations polynomiales à coefficients réelles. Dans cette vaste thématique, on se concentre sur les intersections de quadriques où déjà le cas de trois quadriques reste largement ouvert. Notre sujet peut être résumé comme l'étude topologique des variétés algébriques réelles et l'interaction entre leur topologie d'une part et leur déformations et dégénérations d'autre part, un problème issu du 16ième problème de Hilbert et enrichi par des développements récents. Au cours de ce travail, nous allons étudier les intersections maximales de quadriques réelles et démonter l'existence de telles intersections en utilisant des développements issus des recherches effectuées depuis la fin des années 80. Dans le cas d'intersections de trois quadriques, nous allons mettre en évidence le lien très étroits entre ces intersections et les courbes planes, et démontrer que l'étude des M-courbes peut se faire à travers l'étude des intersections maximales. À travers les résultats sur les courbes planes nodales, nous déterminerons dans certains cas les classes de déformations d'intersections de trois quadriques réelles.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
A gagner : la BD jeunesse adaptée du classique de Mary Shelley !
Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
Chacune des deux demeures dont il sera question est représentée dans le sablier et le lecteur sait d'entrée de jeu qu'il faudra retourner le livre pour découvrir la vérité. Pour comprendre l'enquête menée en 1939, on a besoin de se référer aux indices présents dans la première histoire... un véritable puzzle, d'un incroyable tour de force