Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
L'objectif de ce livre est l'étude métrique et combinatoire des fractions continues multidimensionelles dans le cas des séries formelles. Elle comporte deux parties 1- On démontre la convergence forte et exponentielle de l'algorithme de Jacobi- Perron ( version homogène) dans le cas de séries formelles. On donne des résultats analogues pour la version de Dubois de cet algorithme. Dans la même direction, on prouve que la convergence de l'algorithme de Brun n'est pas exponentielle. 2- On étudie la relation entre les polynômes irréductibles et les éléments de Pisot dans le cas des séries formelles tout en déterminant le nombre de ces éléments en fonction du degré et de la hauteur logarithmique. Par conséquent, on donne une minoration du nombre des polynômes irréductibles à deux variables sur un corps fini. Mots-clef : Séries formelles sur un corps fini, fractions continues multidimensionnelles, algorithme de Jacobi-Perron, algorithme de Brun, convergence, polynômes irréductibles, séries de Pisot.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"