Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Théorie des ensembles (2e édition)

Couverture du livre « Théorie des ensembles (2e édition) » de Jean-Louis Krivine aux éditions Vuibert
  • Date de parution :
  • Editeur : Vuibert
  • EAN : 9782842250966
  • Série : (-)
  • Support : Papier
Résumé:

Née il y a un siècle de l'esprit de Cantor, la théorie des ensembles fascine toujours les mathématiciens.
En leur offrant un cadre axiomatique universel, elle témoigne de l'unité profonde des mathématiques. Ce livre expose les bases d'une théorie qui est devenue un vaste domaine de recherches,... Voir plus

Née il y a un siècle de l'esprit de Cantor, la théorie des ensembles fascine toujours les mathématiciens.
En leur offrant un cadre axiomatique universel, elle témoigne de l'unité profonde des mathématiques. Ce livre expose les bases d'une théorie qui est devenue un vaste domaine de recherches, aux applications variées. Une présentation des axiomes usuels de la théorie des ensembles de Zermelo-Fraenkel (ZF), ainsi que des notions fondamentales d'ordinal et de cardinal, amène naturellement à la question essentielle : quels axiomes raisonnables peut-on ajouter à la théorie ZF sans la rendre contradictoire ? C'est le problème de la consistance relative.
Dans la première partie, on résout ce problème pour l'axiome du choix et l'hypothèse du continu, suivant la méthode des modèles intérieurs. On y trouvera également une preuve inédite et particulièrement élégante du second théorème d'incomplétude de Gödel. La seconde partie est consacrée à la méthode du forcing et à ses applications ; entre autres le célèbre résultat de Cohen sur l'indépendance de l'hypothèse du continu, et le théorème de Solovay sur la non-contradiction de l'axiome : " Tout ensemble de réels est mesurable ".
Complété par une importante série d'exercices avec des indications détaillées, cet ouvrage s'adresse aussi bien aux étudiants de master et de doctorat qu'aux enseignants et chercheurs en mathématiques, ainsi qu'à tous ceux qu'intéresse la philosophie des mathématiques.

Donner votre avis